Preview

Национальный журнал глаукома

Расширенный поиск

Динамика гибели ганглиозных клеток сетчатки при глаукоме и ее функциональные маркеры

Полный текст:

Аннотация

В аналитическом обзоре представлены различные аспекты нарушения структуры и функции зрительной системы у человека и экспериментальных животных при физиологической инволюции и развитии глаукомы, которые систематизированы по зрительным структурам и типам изменений. Особое внимание уделено альтерациям самих ганглиозных клеток (ГК) сетчатки. Возрастные изменения ГК сетчатки и их центральных проекций сопоставлены с изменениями, происходящими при глаукоме. Анализируются данные литературы о последовательности событий, происходящих при гибели ГК, включая изменения во внутреннем плексиформном слое сетчатки (дендритная и синаптическая пластичность, нарушение сложности дендритного ветвления и дегенерация отростков), дисфункцию и дегенерацию аксонов ГК, изменение морфологии и апоптоз сомы ГК. Рассматривается вопрос о чувствительности аксонов и дендритов ГК для различных клеточных типов (принадлежащих парво- и магноцеллюлярной системам) и подклассов (on-, off- и on-off-клеток). Дан сравнительный анализ возможностей современных технологий периметрии, структурной визуализации сетчатки и электрофизиологических исследований в диагностике начальной глаукомы и их перспективы в свете обсуждаемой проблемы. Обосновывается необходимость стандартизировать комплекс параметров функциональных и морфологических исследований для идентификации различных этапов гибели ГК у глаукомных больных и у лиц с подозрением на ПОУГ, которые будут адекватно отражать изменения дендритных отростков, дисфункцию и дегенерацию аксонов и гибель сомы, способствуя своевременному и адекватному выбору таргетной терапии.

Об авторе

М. В. Зуева
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава РФ
Россия


Список литературы

1. Quigley H.A., Broman A.T. The number of people with glaucoma in 2010 and 2020. Br J Ophthalmol 2006; 90: 262-267. doi: 10.1136/bjo.2005.081224.

2. Нестеров А.П. Глаукома. М.: МИА, 2008. 360 с.

3. Зуева М.В. Старение сетчатки: Часть I. Дегенерация и регресс. Российский офтальмологический журнал 2010; 3(2): 53-61

4. Guedes G., Tsai J.C., Loewen N.A. Glaucoma and aging. Curr Aging Sci 2011; 4(2): 110-117.

5. Calkins D.J. Age-related changes in the visual pathways: blame it on the axon. Invest Ophthalmol Vis Sci 2013; 54(14): OrSF37-41. doi: 10.1167/iovs.13-12784.

6. Нестеров А.П., Черкасова И.Н. Роль факторов риска при диагностике открытоугольной глаукомы. Вестник офтальмологии 1987; 5: 18-20.

7. Jakobs T.C., Libby R.T., Ben Y., John S.W., Masland R.H. Retinal ganglion cell degeneration is topological but not cell type-specific in DBA/2J mice. J Cell Biol 2005; 171: 313-325. doi: 10.1083/jcb.200506099

8. Curcio C.A., Drucker D.N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann Neurol 1993; 33: 248-257. doi: 10.1002/ana.410330305

9. Gao H., Hollyfield J.G. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1992; 33: 1-17.

10. Curcio C.A., Millican C.L., Allen K.A., Kalina R.E. Aging of the human photoreceptor mosaic evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 1993; 34(12): 3278-3296.

11. Danias J., Lee K.C., Zamora M.F., Chen B., Shen F., Filippopoulos T., Su Y., Goldlum D., Podos S.M., Mittag T. Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. Invest Ophthalmol Vis Sci 2003; 44: 5151-5162. doi: 10.1167/iovs.02-1101

12. Samuel M.A., Zhang Y., Meister M., Sanes J.R. Age-related alterations in neurons of the mouse retina. J Neurosci 2011; 31: 1603316044. doi: 10.1523/jneurosci.3580-11.2011

13. Harman A.M., Moore S. Number of neurons in the retinal ganglion cell layer of the quokka wallaby do not change throughout life. Anat Rec 1999; 256: 78-83. doi: 10.1002/(sici)1097-0185(19990901)256:1%3C78::aid-ar10%3E3.3.co;2-b

14. Kim C.B., Tom B.W., Spear P.D. Effects of aging on the densities, numbers, and sizes of retinal ganglion cells in rhesus monkey. Neurobiol Aging 1996; 17: 431-438. doi: 10.1016/0197-4580(96)00038-3

15. Harman A.M., MacDonald A., Meyer P., Ahmat A. Numbers of neurons in the retinal ganglion cell layer of the rat do not change throughout life. Gerontology 2003; 49: 350-355. doi: 10.1159/000073762

16. Harman A., Abrahams B., Moore S., Hoskins R. Neuronal density in the human retinal ganglion cell layer from 16-77 years. Anat Rec 2000; 260: 124-131. doi: 10.1002/1097-0185(20001001)260:2%3C124::aidar20%3E3.3.co;2-4

17. Curcio C.A., Allen K.A. Topography of ganglion cells in human retina. J Comp Neurol 1990; 300: 5-25. doi: 10.1002/cne.903000103

18. Blanks J.C., Torigoe Y., Hinton D.R., Blanks R.H. Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 1996; 17: 377-384. doi: 10.1016/0197-4580(96)00010-3

19. Repka M.X., Quigley H.A. The effect of age on normal human optic nerve fiber number and diameter. Ophthalmology 1989; 96: 26-32. doi: 10.1016/s0161-6420(89)32928-9

20. Jonas J.B., Schmidt A.M., Muller-Bergh J.A., Schlotzer-Schrehardt U.M., Naumann G.O. Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 1992; 33: 2012-2018.

21. Perge J.A., Niven J.E., Mugnaini E., Balasubramanian V., Sterling P. Why do axons differ in caliber? J Neurosci 2012; 32: 626-638. doi: 10.1523/jneurosci.4254-11.2012

22. Wang A.L., Yuan M., Neufeld A.H. Age-related changes in neuronal susceptibility to damage: comparison of the retinal ganglion cells of young and old mice before and after optic nerve crush. Ann NY Acad Sci 2007; 1097(1): 64-66. doi: 10.1196/annals.1379.027

23. Niven J.E., Laughlin S.B. Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 2008; 211: 17921804. doi: 10.1242/jeb.017574

24. Band L.R., Hall C.L., Richardson G., Jensen O.E., Siggers J.H., Foss A.J. Intracellular flow in optic nerve axons: a mechanism for cell death in glaucoma. Invest Ophthalmol Vis Sci 2009; 50: 37503758. doi: 10.1167/iovs.08-2396

25. Calkins D.J. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 2012; 31: 702-719. doi: 10.1016/j.preteyeres.2012.07.001

26. Crish S.D., Calkins D.J. Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience 2011; 176: 1-11. doi: 10.1016/j.neuroscience.2010.12.036

27. Crish S.D., Dapper J.D., MacNamee S.E., Balaram P., Sidorova T.N., Lambert W.S., Calkins D.J. Failure of axonal transport induces a spatially coincident increase in astrocyte BDNF prior to synapse loss in a central target. Neuroscience 2013; 229: 55-70. doi: 10.1016/j.neuroscience.2012.10.069

28. Dengler-Crish C.M., Smith M.A., Inman D.M., Wilson G.N., Young J.W., Crish S.D. Anterograde transport blockade precedes deficits in retrograde transport in the visual projection of the DBA/2J mouse model of glaucoma. Front Neurosci, 17 September 2014. doi: 10.3389/fnins.2014.00290 Гибель ганглиозныо: клеток сетчатки при глаукоме

29. Toescu E.C. Normal brain ageing: models and mechanisms. Philos Trans. R Soc Lond B Biol Sci 2005; 360: 2347-2354. doi: 10.1098/rstb.2005.1771

30. Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 2007; 292: 670-686. doi: 10.1152/ajpcell.00213.2006

31. Chrysostomou V., Trounce I.A., Crowston J.G. Mechanisms of retinal ganglion cell injury in aging and glaucoma. Ophthalmic Res 2010; 44: 173-178. doi: 10.1159/000316478

32. Reeves T.M., Smith T.L., Williamson J.C., Phillips L.L. Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury. J Neuropathol Exp Neurol 2012; 71: 198-210. doi: 10.1097/nen.0b013e3182482590

33. Baltan S., Inman D.M., Danilov C.A., Morrison R.S., Calkins D.J., Horner P.J. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration J Neurosci 2010; 30: 5644-5652. doi: 10.1523/jneurosci.5956-09.2010

34. Morrison J.C., Cork L.C., Dunkelberger G.R., Brown A., Quigley H.A. Aging changes of the rhesus monkey optic nerve. Invest Ophthalmol Vis Sci 1990; 31: 1623-1627.

35. Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell R.S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41: 741-748.

36. Sandell J.H., Peters A. Effects of age on nerve fibers in the rhesus monkey optic nerve. J Comp Neurol 2001; 429: 541-553. doi: 10.1002/1096-9861(20010122)429:4%3C541::aid-cne3%3E3.0.co;2-5

37. Abbott C.J., Choe T.E., Burgoyne C.F., Cull G., Wang L., Fortune B. Comparison of retinal nerve fiber layer thickness in vivo and axonal transport after chronic intraocular pressure elevation in young versus older rats. PLoS One 2014;9(12): e114546. doi: 10.1371/journal.pone.0114546. eCollection 2014.

38. Neufeld A.H., Gachie E.N. The inherent, age-dependent loss of retinal ganglion cells is related to the lifespan of the species. Neurobiol Aging 2003; 24: 167-172. doi: 10.1016/s0197-4580(02)00059-3

39. Harwerth R.S., Wheat J.L., Rangaswamy N.V. Age-related losses of retinal ganglion cells and axons. Invest Ophthalmol Vis Sci 2008; 49(10): 4437-4443. doi: 10.1167/iovs.08-1753

40. Wassle H., Boycott B.B. Functional architecture of the mammalian retina. Physiol Rev 1991; 71: 447-480. doi: 10.1016/b978-0-323-02598-0.50010-0

41. Wassle H. Parallel processing in the mammalian retina. Nat Rev Neurosci 2004; 5(10): 747-757. doi: 10.1038/nrn1497

42. Merigan W.H., Maunsell J.H. How parallel are the primate visual pathways? Ann Rev Neurosci 1993; 16: 369-402. doi: 10.1146/ annurev.ne.16.030193.002101

43. Morgan J.E., Uchida H., Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol 2000; 84: 303-310. doi: 10.1136/bjo.84.3.303

44. Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin Exp Ophthalmol 2012; 40: 364-368. doi: 10.1111/j.1442-9071.2012.02789.x

45. Гусев Е.И., Камчатнов П.Р. Пластичность нервной системы. Журнал неврологии и психиатрии 2004; 3: 73-79. [Gusev E.I., Kamchatnov P.R. The plasticity of the nervous system. Zh Nevrol Psikhiatr Im SS Korsakova 2004; 3: 73-79. (In Russ.)].

46. Nieto-Sampedro M., Nieto-Dias M. Neural plasticity: changes with age. J Neural Transm (Vienna) 2005; 112(1): 3-27. doi: 10.1007/s00702-004-0146-7

47. Живолупов С.А., Самарцев И.Н. Нейропластичность: патофизиологические аспекты и возможности терапевтической модуляции. Журнал неврологии и психиатрии 2009; 109(4): 78-85

48. Frick A., Johnston D. Plasticity of dendritic excitability. J Neurobiol 2005; 64: 100-115. doi: 10.1002/neu.20148

49. Liu M., Duggan J., Salt T.E., Cordeiro M.F. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp Eye Res 2011; 92: 244-250. doi: 10.1016/j.exer.2011.01.014.

50. Stevens B., Allen N.J., Vazquez L.E., Howell G.R., Christopherson K.S., Nouri N., Micheva K.D., Mehalow A.K., Huberman A.D., Stafford B., Sher A., Litke A.M., Lambris J.D., Smith S.J., John S.W., Barres B.A. The classical complement cascade mediates CNS synapse elimination. Cell 2007; 131(6): 1164-1178. doi: 10.1016/j.cell.2007.10.036

51. Lopez J.C. Quantifying synaptic efficacy 2002; 3(5): 332. doi: 10.1038/nrn814

52. Frishman L.J., Freeman A.W., Troy J.B., Schweitzer-Tong D.E., Enroth-Cugell C. Spatiotemporal frequency responses of cat retinal ganglion cells. J Gen Physiol 1987; 89(4): 599-628. doi: 10.1085/jgp.89.4.599

53. Porciatti V., Ventura L.M. Physiological significance of steady-state PERG losses in glaucoma: clues from simulation of abnormalities in normal subjects. J Glaucoma 2009;18(7): 535-542. doi: 10.1097/ijg.0b013e318193c2e1

54. Weber A.J., Harman C.D. Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci 2005; 46(9): 3197-3207. doi: 10.1167/iovs.040834

55. Ahmed F.A., Chaudhary P., Sharma S.C. Effects of increased intraocular pressure on rat retinal ganglion cells. Int J Dev Neurosci 2001; 19: 209-218. doi: 10.1016/s0736-5748(00)00073-3

56. Kalesnykas G., Oglesby E.N., Zack D.J., Cone F.E., Steinhart M.R., Tian J., Pease M.E., Quigley H.A. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci 2012; 53(7): 3847-3857. doi: 10.1167/iovs.12-9712

57. Shou T., Liu J., Wang W., Zhou Y., Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci 2003; 44: 3005-3010. doi: 10.1167/iovs.02-0620

58. Weber A.J., Kaufman P.L., Hubbard W.C. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci 1998; 39: 2304-2320.

59. Feng L., Zhao Y., Yoshida M., Chen H., Yang J.F., Kim T.S., Cang J., Troy J.B., Liu X. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 2013; 54(2): 1106-1117. doi: 10.1167/iovs.12-10791

60. Vidal-Sanz M., Salinas-Navarro M., Nadal-Nicolas F.M., Alarcon-Martfnez L., Valiente-Soriano F.J., de Imperial J.M., Avilés-Trigue-ros M., Agudo-Barriuso M., Villegas-Pérez M.P. Understanding glaucomatous damage: anatomical and functional data from ocular hypertensive rodent retinas. Prog Retin Eye Res 2012; 31: 1-27. doi: 10.1016/j.preteyeres.2011.08.001

61. Berry R.H., Qu J., John S.W., Howell G.R., Jakobs T.C. Synapse loss and dendrite remodeling in a mouse model of glaucoma. PLoS One 2015 4;10(12): e0144341. doi: 10.1371/journal.pone.0144341. eCollection 2015.

62. El-Danaf R., Huberman A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci 2015; 35(6): 2329-2343. doi: 10.1523/jneurosci.1419-14.2015

63. Puyang Z., Chen H., Liu X. Subtype-dependent morphological and functional degeneration of retinal ganglion cells in mouse models of experimental glaucoma. J Nat Sci 2015; 1(5): e103.

64. Chen H., Zhao Y., Liu M., Feng L., Puyang Z., Yi J., Liang P., Zhang H.F., Cang J., Troy J.B., Liu X. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Invest Ophthalmol Vis Sci 2015; 56(3): 1971-1984. doi: 10.1167/iovs.14-15691

65. Crish S.D., Sappington R.M., Inman D.M., Horner P.J., Calkins D.J. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci USA 2010; 107: 5196-5201. doi: 10.1073/pnas.0913141107

66. Liu X., Grishanin R.N., Tolwani R.J., Renteria R.C., Xu B., Rei-chardt L.F., Copenhagen D.R. Brain-derived neurotrophic factor and TrkB modulate visual experience-dependent refinement of neuronal pathways in retina. J Neurosci 2007; 27(27): 7256-7267. doi: 10.1523/jneurosci.0779-07.2007

67. Liu X., Robinson M.L., Schreiber A.M., Wu V., Lavail M.M., Cang J., Copenhagen D.R. Regulation of neonatal development of retinal ganglion cell dendrites by neurotrophin-3 overexpression. J Comp Neurol 2009; 514(5): 449-458. doi: 10.1002/cne.22016

68. Chen H., Liu X., Tian N. Subtype-dependent postnatal development of direction- and orientation-selective retinal ganglion cells in mice. J Neurophysiol 2014; 112(9): 2092-2101. doi: 10.1152/ jn.00320.2014

69. Vincent S.L., Peters A., Tigges J. Effects of aging on the neurons within area 17 of rhesus monkey cerebral cortex. Anat Rec 1989; 223: 329-341. doi: 10.1002/ar.1092230312

70. Burke S.N., Barnes C.A. Neural plasticity in the ageing brain. Nat Rev Neurosci 2006; 7: 30-40. doi: 10.1038/nrn1809.

71. Li M., He H.G., Shi W., Li J., Lv B., Wang C.H., Miao Q.W., Wang Z.C., Wang N.L., Walter M., Sabel B.A. Quantification of the human lateral geniculate nucleus in vivo using MR imaging based on morphometry: volume loss with age. AJNR Am J Neuroradiol 2012; 33: 915-921. doi: 10.3174/ajnr.a2884

72. Selemon L.D., Begović A. Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 2007; 151: 1-10. doi: 10.1016/j.psychres.2006.11.003.

73. Ahmad A., Spear P.D. Effects of aging on the size, density, and number of rhesus monkey lateral geniculate neurons. J Comp Neurol 1993;334: 631-643. doi: 10.1002/cne.903340410

74. Diaz F., Villena A., Gonzalez P., Requena V., Rius F., Perez De Vargas I. Stereological age-related changes in neurons of the rat dorsal lateral geniculate nucleus. Anat Rec 1999; 255: 396-400. doi: 10.1002/(sici)1097-0185(19990801)255:4%3C396::aidar5%3E3.3.co;2-d

75. Karlsson J.-O., Inomata M., Kawashima S. Slow axonal transport of soluble proteins and calpain in retinal ganglion cells of aged rabbits. Neurosci Lett 1992; 141: 127-129. doi: 10.1016/0197-0186(92)91873-u

76. Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 2003; 22(4): 465-481. doi: 10.1016/ s1350-9462(03)00026-0

77. Yucel Y.H., Gupta N., Zhang Q., Mizisin A.P., Kalichman M.W., Weinreb R.N. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol 2006; 124(2): 217-225. doi: 10.1001/archopht.124.2.217

78. Gupta N., Ang L.C., Noel de Tilly L., Bidaisee L., Yucel Y.H. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 2006; 90(6): 674-678. doi: 10.1136/bjo.2005.086769.

79. Алексеев В.Н., Газизова И.Р., Никитин Д.Н., Тубаджи Ессам, Ринджибал Алмайсам, Фарзад Захеди. Первичная открытоугольная глаукома и дегенеративные изменения в центральных отделах зрительного анализатора. Офтальмологические ведомости 2012; (3): 23-28.

80. Газизова И.Р., Алмайсам Ринджибал. Нейродегенератив-ные изменения в головном мозге при глаукоме. Клиническая офтальмология 2012; (3): 88-91.

81. Еричев В.П., Туманов В.П., Панюшкина Л.А., Федоров А.А. Сравнительный анализ морфологических изменений в зрительных центрах при первичной глаукоме и болезни Альцгеймера. Национальный журнал глаукома 2014; (3): 5-13

82. Gupta N., Greenberg G., Noel de Tilly L., Gray B., Polemidiotis M., Yucel Y.H. Atrophy of the lateral geniculate nucleus in human glaucoma by Magnetic Resonance Imaging. Br J Ophthalmol 2009; 93: 56-60. doi: 10.1136/bjo.2008.138172

83. Gupta N., Zhang Q., Kaufman P.L., Weinreb R.N., Yucel Y.H. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp Eye Res 2007; 84: 176-184. doi: 10.1016/j.exer.2006.09.013

84. Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yücel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis Res 2011; 51(2): 243-250. doi: 10.1016/j.visres.2010.08.003. Epub 2010 Aug 6. doi: 10.1016/j.visres.2010.08.003

85. Morquette J.B., Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? J Neuroophthalmol 2008; 28: 144-154. doi: 10.1097/wno.0b013e318177edf0

86. Porciatti V., Ventura L.M. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol 2012; 32(4): 354-358. doi: 10.1097/WNO.0b013e3182745600.

87. Banitt M.R., Ventura L.M., Feuer W.J., Savatovsky E., Luna G., Shif O., Bosse B., Porciatti V. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci 2013; 54: 2346-2352. doi: 10.1167/iovs.12-11026

88. Harwerth R.S., Quigley H.A. Visual field defects and retinal ganglion cell losses in human glaucoma patients. Arch Ophthalmol 2006; 124(6): 853-885. doi: 10.1001/archopht.124.6.853.

89. Bach M., Hoffmann M.B. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 2008; 85: 386-395. doi: 10.1097/opx.0b013e318177ebf3

90. Ventura L.M., Sorokac N., De Los Santos R., Feuer W.J., Porciatti V. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 2006; 47(9): 3904-3911. doi: 10.1167/iovs.06-0161

91. Tsironi E.E., Dastiridou A., Ratsanos A., Dardiotis E., Veliki S., Patramani G., Zacharaki F., Ralli S., Hadjigeorgiou G.M. Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmology 2012; 12(1): 54. doi: 10.1186/14712415-12-54

92. Еричев В.П., Панюшкина Л.А. Диагностическая ценность функциональных и морфометрических параметров сетчатки и зрительного нерва у пациентов с болезнью Альцгеймера. Национальный журнал глаукома 2014; 2: 5-10.

93. Harwerth R.S., Wheat J.L., Fredette M.J., Anderson D.R. Linking structure and function in glaucoma. Prog Retin Eye Res 2010; 29(4): 249-271. doi: 10.1016/j.preteyeres.2010.02.001. Epub 2010 Mar 11.

94. Harwerth R.S., Wheat J.L. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch Clin Exp Ophthalmol 2008; 246(2): 305-314.

95. Wheat J.L., Rangaswamy N.V., Harqerth R.S. Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients. J Glaucoma 2012; 21(2): 95-101. doi: 10.1097/IJG.0b013e31820bcfbe.

96. Зуева М.В., Арапиев М.У., Цапенко И.В., Ловпаче Д.Н., Маглакелидзе Н.М., Лантух Е.П. Морфофункциональные особенности изменения ганглиозных клеток сетчатки при физиологическом старении и в ранней стадии глаукомы. Вестник офтальмологии 2016; 1.

97. Johnson M.A., Drum B.A., Quigley H.A., Sanchez R.M., Dunkelberger G.R. Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 1989; 30(5): 897-907.

98. Siliprandi R., Bucci M.G., Canella R., Carmignoto G. Flash and pattern electroretinograms during and after acute intraocular pressure elevation in cats. Invest Ophthalmol Vis Sci 1988; 29(4): 558-565.

99. Lee B.B., Martin P.R., Valberg A. Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli. J Physiol 1989; 414(1): 245-263. doi: 10.1113/jphysiol.1989.sp017686

100. Dowling J.E., Werblin F.S. Synaptic organization of the vertebrate retina. Vis Res 1971: 1-15. doi: 10.1016/0042-6989(71)90026-5

101. Porciatti V. The mouse pattern electroretinogram. Documenta Ophthalmologica 2007; 115(3): 145-153. doi: 10.1007/s10633-007-9059-8.

102. Viswanathan S., Frishman L.J., Robson J.G. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 2000; 41(9): 2797-2810.


Для цитирования:


Зуева М.В. Динамика гибели ганглиозных клеток сетчатки при глаукоме и ее функциональные маркеры. Национальный журнал глаукома. 2016;15(1):70-85.

For citation:


Zueva M.V. Dynamics of retinal ganglion cell death in glaucoma and its functional markers. National Journal glaucoma. 2016;15(1):70-85. (In Russ.)

Просмотров: 233


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)