Preview

Национальный журнал Глаукома

Расширенный поиск

Оптическая когерентная томография в диагностике глаукомной оптиконейропатии. Часть 1

Полный текст:

Об авторах

Н. И. Курышева
Центр офтальмологии ФМБА России; Клиническая больница № 86
Россия


О. А. Паршунина
Центр офтальмологии ФМБА России; Клиническая больница № 86
Россия


Список литературы

1. Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41(3): 741-748.

2. Medeiros F.A., Lisboa R., Weinreb R.N., Liebmann J.M., Gir-kin C., Zangwill L.M. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology 2013; 120: 736-744. doi 10.1016/j.ophtha.2012.09.039.

3. Harwerth R.S., Carter-Dawson L., Smith E.L., 3rd, Barnes G., Holt W.F., Crawford M.L. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 2004; 45: 3152-3160. doi 10.1167/iovs.04-0227.

4. Johnson C.A., Sample P.A., Zangwill L.M. et al. Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. Am J Ophthalmol 2003; 135: 148-154.

5. Johnson D.E., El-Defrawy S.R., Almeida D.R., Campbell R.J. Comparison of retinal nerve fibre layer measurements from time domain and spectral domain optical coherence tomography systems. Can J Ophthalmol 2009; 44: 562-566. doi 10.3129/i09-106.

6. Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: a review. JAMA 2014; 311: 1901-1911. doi 10.1001/jama.2014.3192.

7. Kim J.S., Ishikawa H., Gabriele M.L. et al. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. Invest Ophthalmol Vis Sci 2010; 5: 896-902. doi 10.1167/iovs.09-4110.

8. Leung C.K., Cheung C.Y., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 2009; 116: 1257-1263. doi 10.1016/j.ophtha.2011.10.010.

9. Park S.B., Sung K.R., Kang S.Y., Kim K.R., Kook M.S. Comparison of glaucoma diagnostic capabilities of cirrus HD and stratus optical coherence tomography. Arch Ophthalmol 2009; 127: 16031609. doi 10.1001/archophthalmol.2009.296.

10. Sehi M., Grewal D.S., Sheets C.W., Greenfield D.S. Diagnostic ability of Fourier-domain time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol 2009; 148: 597-605. doi 10.1016/j.ajo.2009.05.030.

11. Sull A.C., Vuong L.N., Price L.L. et al. Comparison of spectral/ Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 2010; 30: 221-235. doi.org/10.1097/iae.0b013e3181bd2c3b.

12. Leite M.T., Rao H.L., Zangwill L.M., Weinreb R.N., Medeiros F.A. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 2011; 118: 1334-1339. doi.org/10.1016/j.ophtha.2010.11.029.

13. Leung C.K., Lam S., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 2010; 117: 1684-1691. doi.org/10.1097/ijg.0b013e3182070684.

14. Rao H.L., Zangwill L.M., Weinreb R.N., Sample P.A., Alencar L.M., Medeiros F.A. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 2010; 117: 1692-1699. doi.org/10.1016/j.ophtha.2010.01.031.

15. Wang X., Li S., Fu J. et al. Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC. Br J Ophthalmol 2011; 95: 509-513. doi.org/10.1136/bjo.2009.163493.

16. Pechauer A., Liu L., Gao S., Jian C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci 2015; 56: 32873291. doi.org/10.1167/iovs.15-16655.

17. Jonas J.B., Fernandez M.C., Sturmer J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 1993; 100: 63-68. doi.org/10.1016/s0161-6420(13)31694-7.

18. Inoue R., Hangai M., Kotera Y., Nakanishi H., Mori S., Morishita S. et al. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology 2009; 116: 214-222. doi 10.1016/j.ophtha.2008.09.008.

19. Шпак А.А., Малаханова М.К., Огородникова С.Н. Оценка стереометрических параметров диска зрительного нерва и слоя нервных волокон сетчатки на приборе HRT III. Сообщение 3. Сравнение ошибки методов гейдельбергской ретинотомографии и спектральной оптической когерентной томографии. Вестник офтальмологии 2011; 2: 46-49

20. Nilforushan N., Nassiri N., Moghimi S. et al. Structure-function relationships between spectral-domain OCT and standard achromatic perimetry. Invest Ophthalmol Vis Sci 2012; 53(6): 2740-2748. doi.org/10.1167/iovs.11-8320.

21. Rao H.L., Zangwill L.M., Weinreb R.N., Leite M.T., Sample P.A., Medeiros F.A. Structure-function relationship in glaucoma using spectral-domain optical coherence tomography. Arch Ophthalmol 2011; 129(7): 864-871. doi.org/10.1001/archophthalmol.2011.145.

22. Swanson W.H., Felius J., Pan F. Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Invest Ophthalmol Vis Sci 2004; 45(2): 466-472. doi.org/10.1167/iovs.03-0374.

23. Curcio C.A., Allen K.A. Topography of ganglion cells in human retina. J Comp Neurol 1990; 300: 5-25. doi.org/10.1002/cne.903000103.

24. Gabriele M.L., Wollstein G., Ishikawa H., Xu J., Kim J., Kagemann L., Folio L.S., Schuman J.S. Three dimensional optical coherence tomography imaging: advantages and advances. Prog Retin Eye Res 2010; 29: 556-579. doi.org/10.1016/j.preteyeres.2010.05.005.

25. Bixenman W.W., von Noorden G.K. Apparent foveal displacement in normal subjects and in cyclotropia. Ophthalmology 1982; 89: 58-62. doi.org/10.1016/s0161-6420(82)34862-9.

26. Lefevre F., Leroy K., Delrieu B., Rao H.L., Alencar L.M., Medeiros F.A. Study of the optic nerve head fovea angle with retinophotog-raphy in healthy patients. J Fr Ophthalmol 2007; 30: 598-606. doi.org/10.1016/s0181-5512(07)89664-1.

27. Rohrschneider K. Determination of the location of the fovea on the fundus. Invest Ophthalmol Vis Sci 2004; 45: 3257-3258. doi.org/10.1167/iovs.03-1157.

28. Timberlake G.T., Sharma M.K., Grose S.A., Gobert D.V., Gauch J.M., Maino J.H. Retinal location of the preferred retinal locus relative to the fovea in scanning laser ophthalmoscope images. Optom Vis Sci 2005; 82: 177-185. doi.org/10.1097/01.opx.0000156311.49058.c8.

29. Hood D.C., Anderson S.C., Wall M., Raza A.S., Kardon R.H. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Invest Ophthalmol Vis Sci 2009; 27: 875-881. doi.org/10.1167/iovs.08-2697.

30. Курышева Н.И., Паршунина О.А., Арджевнишвили Т.Д., Иртегова Е.Ю., Киселева Т.Н., Лагутин М.Б. Поиск новых маркеров в ранней диагностике первичной открытоугольной глаукомы. Российский офтальмологический журнал 2015; 8(3)23-30.

31. Stamper R.L. The effect of glaucoma on central visual function. Trans Am Ophthalmol Soc 1984; 82: 792-826.

32. Araie M. Pattern of visual field defects in normal-tension and high-tension glaucoma. Curr Opin Ophthalmol 1995; 6: 36-45. doi.org/10.1097/00055735-199504000-00007.

33. Anctil J.L., Anderson D.R. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol 1984; 102: 363-370. doi.org/10.1001/archopht.1984.01040030281019.

34. Aulhorn E., Harms M. Early visual field defects in glaucoma. Glaucoma, Tutzing Symposium. Karger, Basel. 1967; 151-186. doi.org/10.1159/000389404.

35. Grewal D.S., Sehi M., Paauw J.D., Greenfield D.S. and The Advanced Imaging in Glaucoma Study Group. Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomo-graphy using three criteria for functional progression. J Glaucoma 2012; 21(4): 214-220. doi: 10.1097/IJG.0b013e3182071cc7

36. Heijl A., Lundqvist L. The frequency distribution of earliest glaucomatous visual field defects documented by automated perimetry. Acta Ophthalmol 1984; 62: 657-664. doi.org/10.1111/j.1755-3768.1984.tb03979.x.

37. Wang M., Hood D.C., Cho J.S., Ghadiali Q., De Moraes G.V., Zhang X., Ritch R., Liebmann J.M. Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch Ophthalmol 2009; 127: 875881. doi.org/10.1001/archophthalmol.2009.145.

38. Traynis I., de Moraes C.G., Raza A.S., Liebmann J.M., Ritch R., Hood D.C. The Prevalence and Nature of Glaucomatous Defects in the Central 10° of the Visual Field. ARVO 2012. doi.org/10.1001/jamaophthalmol.2013.7656.

39. Su D., Park S.C., Simonson J.L., Liebmann J.M., Ritch R. Progression pattern of initial parafoveal scotomas in glaucoma. Ophthalmology 2013; 120(3): 520-527. doi: 10.1016/j.ophtha.2012.08.018.

40. Schiefer U., Papageorgiou E., Sample P.A., Pascual J.P., Selig B., Krapp E., Paetzold J. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci 2010; 51: 5685-5689. doi.org/10.1167/iovs.09-5067.

41. Hood D.C., Raza A.S., de Moraes C.G.V., Odel J.G., Greensten V.C., Liebmann J.M., Ritch R. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 940946. doi.org/10.1167/iovs.10-5803.

42. Huang J.Y., Pekmezci M., Mesiwala N., Kao A., Lin S. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography. J Glaucoma 2011; 20: 87-95. doi.org/10.1097/ijg.0b013e3181d787b6.

43. Kotowski J., Folio L.S., Wollstein G. et al. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol 2012; 96: 1420-1425. doi.org/10.1136/bjophthalmol-2011-301021.

44. Choi S.S., Zawadzki R.J., Lim M.C. et al. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. Br J Ophthalmol 2011; 95: 131-141. doi.org/10.1136/bjo.2010.183756.

45. Эскина Э.Н., Зыкова А.В. Ранние критерии риска развития глаукомы у пациентов с близорукостью. Офтальмология 2014; 11(2): 59-63. [Eskina E.N., Zykova A.V. Early criteria of glaucoma development risk in patients with myopia. Ophthalmology 2014; 11(2): 59-63. (In Russ.)].

46. Cho J.W., Sung K.R., Lee S. et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 6401-6407. doi.org/10.1167/iovs.09-5035.

47. Chiba N., Omodaka K., Yokoyama Y., Aizawa N., Tsuda S., Yasuda M. et al. Association between optic nerve blood flow and objective examinations in glaucoma patients with generalized enlargement disctype. Clin Ophthalmol 2011; 5: 1549-1556. doi: 10.2147/OPTH.S22097

48. Yokoyama Y., Tanito M., Nitta K., Katai M., Kitaoka Y., Omodaka K. et al. Stereoscopic analysis of optic nerve head parameters in primary open angle glaucoma: the glaucoma stereo analysis study. PLoSOne 2014; 9: 99-138. doi: 10.1371/journal.pone.0099138.

49. Reis A.S., O’Leary N., Yang H., Sharpe G.P., Nicolela M.T., Bur-goyne C.F., Chauhan B.C. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 2012; 53(4): 1852-1860. doi: 10.1167/iovs.11-9309.

50. Povazay B., Hofer B., Hermann B. et al. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt 2007; 12: 204-241. doi.org/10.1117/1.2773736.

51. Strouthidis N.G., Fortune B., Yang H. et al. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 1206-1219. doi.org/10.1167/iovs.10-5599.

52. Reis A.S., Sharpe G.P., Yang H., Nicolela M.T., Burgoyne C.F., Chauhan B.C. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 2012; 119(4): 738-747. doi: 10.1016/j.ophtha.2011.09.054.

53. Chauhan B.C., O’Leary N., Almobarak F.A. et al. Enhanced detection of open angle glaucoma with an anatomically accurate optical coherence tomography derived neuroretinal rim parameter. Ophthalmology 2013; 120: 535-543. doi.org/10.1016/j.ophtha.2012.09.055.

54. Furlanetto R.L., Park S.C., Damle U.J., Sieminski S.F., Kung Y., Siegal N. et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo inter individual and inter eye comparisons. Invest Ophthalmol Vis Sci 2013; 54: 4836-4842. doi: 10.1167/iovs.12-11530.

55. Nadler Z., Wang B., Wollstein G., Nevins J.E., Ishikawa H., Kagemann L. et al. Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed Opt Express 2013; 4: 2596-2608. doi: 10.1364/BOE.4.002596.

56. Leitgeb R., Schmetterer L.F., Wojtkowski M., Hitzenberger C.K., Sticker M., Fercher A.F. Flow velocity measurements by frequency domain short coherence interferometry. Proc 2002; 4619: 16-21. doi.org/10.1117/12.470477.

57. Park H.Y., Jeon S.H., Park C.K. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology 2012; 119: 10-20. doi: 10.1016/j.ophtha.2011.07.033.

58. Omodaka K., Horii T., Takahashi S., Kikawa T., Matsumoto A., Shiga Y. et al. 3D Evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS ONE 2015; 10(4): 122-347. doi: 10.1371/journal.pone.0122347.

59. Hayreh S.S. Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res 2001; 20(5): 595-624. doi.org/10.1016/s1350-9462(01)00005-2.

60. Grunwald J.E., Piltz J., Hariprasad S.M., DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci 1998; 39(12): 2329-2336. doi.org/10.1016/s0002-9394(01)00871-6.

61. Mrejen S., Spaide R.F. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 2013; 58: 387-429. doi.org/10.1016/j.survophthal.2012.12.001

62. Hirooka K., Fujiwara A., Shiragami C., Baba T., Shiraga F. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol 2012; 40(6): 576-582. doi.org/10.1111/j.1442-9071.2012.02762.x

63. Cennamo G., Finelli M., Iaccarino G., de Crecchio G. Choroidal thickness in open-angle glaucoma measured by spectral-domain scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 2012; 228(1): 47-52. doi.org/10.1159/000336903

64. Ehrlich J.R., Peterson J., Parlitsis G., Kay K.Y., Kiss S., Radcliffe N.M. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography. Exp Eye Res 2011; 92(3): 189-194. doi.org/10.1016/j.exer.2011.01.002

65. Курышева Н.И., Арджевнишвили Т.Д., Киселева Т.Н., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Национальный журнал глаукома 2013; 4: 73-83. [Kurysheva N.I., Ardzhevnishvili T.D., Kiseleva T.N., Fomin A.V. Choroid in glaucoma: the results of an optical coherence tomography study. Natsional’nyi zhurnal glaukoma 2013; 4: 73-83 (In Russ.)].

66. Mangan B.G., Al-Yahya K., Chen C.T. et al. Retinal pigment epithelial damage, breakdown of the blood-retinal barrier, and retinal inflammation in dogs with primary glaucoma. Vet Ophthalmol 2007; 10(1): 117-124. doi.org/10.1111/j.1463-5224.2007.00585.x

67. Jonas J.B., Naumann G.O. Parapapillary retinal vessel diameter in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci 1989; 30(7): 1604-1611.

68. Guo Y., Wang Y.X., Xu L., Jonas J.B. Five-year follow-up of para-papillary atrophy: the Beijing Eye Study. PloS One 2012; 7(5): 32-35. doi.org/10.1371/journal.pone.0032005.

69. Caprioli J. Discrimination between normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 1992; 33: 153-159.

70. Wieser W., Biedermann B.R., Klein T. et al. Multimegahertz OCT: high quality3D imaging at 20 million A-scans and 4.5 G Voxels per second. Opt Express 2010; 18: 14685-14704. doi.org/10.1364/ oe.18.014685

71. Liu B., Brezinski M.E. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt 2007; 12: 44-47. doi.org/10.1117/1.2753410.

72. Takayama K., Hangai M., Kimura Y. et al. Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 4798-4807. doi.org/10.1167/iovs.13-11677.

73. Wang B., Nevins J.E., Nadler Z. et al. In vivo lamina cribrosa micro-architecturein healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 8270-8274. doi.org/10.1167/iovs.13-13109.

74. Lopilly Park H.Y., Lee N.Y., Choi J.A., Park C.K. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open angle glaucoma and myopia. Am J Ophthalmol 2014; 157: 876-884. doi.org/10.1016/j.ajo.2014.01.007.

75. Nadler Z., Wang B., Wollstein G. et al. Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography. Biomed Opt Express 2014; 5: 1114-1123. doi.org/10.1364/boe.5.001114.

76. Gotzinger E., Pircher M., Baumann B. et al. Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. Opt Express 2009; 17: 4151-4165. doi.org/10.1364/oe.17.004151.

77. Yamanari M., Makita S., Lim Y., Yasuno Y. Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation. Opt Express 2010; 18: 13964-13980. doi.org/10.1364/oe.18.013964.

78. Cense B., Gao W., Brown J.M. et al. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. Opt Express 2009; 17: 21634-21651. doi.org/10.1364/oe.17.021634.

79. Dwelle J., Liu S., Wang B. et al. Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous nonhuman primates. Invest Ophthalmol Vis Sci 2012; 53: 4380-4395. doi.org/10.1167/iovs.11-9130.

80. Liu S., Wang B.B., Yin B.M. et al. Retinal nerve fiber layer reflectance for early glaucoma diagnosis. J Glaucoma 2014; 23: 45-52. doi.org/10.1097/ijg.0b013e31829ea2a7.


Рецензия

Для цитирования:


Курышева Н.И., Паршунина О.А. Оптическая когерентная томография в диагностике глаукомной оптиконейропатии. Часть 1. Национальный журнал Глаукома. 2016;15(1):86-96.

For citation:


Kurysheva N.I., Parshunina O.A. Optical coherence tomography in glaucoma optic neuropathy diagnostics. Part 1. National Journal glaucoma. 2016;15(1):86-96. (In Russ.)

Просмотров: 1094


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)