Comparative study of microcirculatory and structural parameters of the foveal avascular zone in patients with glaucoma and diabetes mellitus
https://doi.org/10.25700/NJG.2020.03.03
Abstract
PURPOSE: To study the parameters of the foveal avascular zone (FAZ) and its relationship with the functional, structural and hemodynamic macular indicators in patients with primary open-angle glaucoma (POAG) and type 2 diabetes mellitus.
MATERIALS AND METHODS: The study included 103 patients (161 eyes), who were divided into 3 groups: the 1st group — 58 eyes (31 patients) with 1st stage of POAG and diabetes; the 2nd group — 53 eyes (36 patients) with 1st stage of POAG; the 3rd group — 50 eyes (36 patients) with diabetes. The patients underwent a complete ophthalmological examination, including optical coherence tomography with angiography mode using a Cirrus 5000 Angioplex machine (“Carl Zeiss Meditec”). Functional, structural, hemodynamic parameters, FAZ area, FAZ perimeter, circularity index were evaluated.
RESULTS: The lowest functional indicators were noted in the group of patients with a combined course of POAG and diabetes (best corrected visual acuity (BCVA) 0.63±0.19, MD -4.01±1.52 dB, visual field index 94.69±3.09%) and structural indicators (RNFL 79.91±12.66 μm and GCL+IPL 66.33±15.39 μm), accompanied by a decline in blood density and perfusion (wiPD 28.87±9.08%, wiVD 13.15±3.19/mm), a decrease in FAZ area almost by 2 times (0.62±0.03 mm2), an increase in its perimeter to 3.54±1.57 mm. The circularity index was significantly lower in groups 1 and 3 (0.59±0.11 and 0.58±0.09, respectively) compared with the 2nd group (POAG): 0.66±0.1. The results of the correlation analysis showed a statistically significant inverse dependence of the area and perimeter of FAZ on all hemodynamic parameters.
CONCLUSION: The combined course of POAG and diabetes, even in the initial stages of the disease, is accompanied by pronounced structural changes, deterioration of hemodynamic parameters and impaired microcirculation of the macula. Dynamic monitoring of the area and perimeter of the avascular zone, the circularity index is important for the control and early diagnosis of macular microcirculation disorders, risk assessment and the rate of progression of optic neuropathy in patients with glaucoma.
About the Authors
A. Zh. FursovaRussian Federation
Med.Sc.D., Head of Ophthalmology Department
52 Krasny Prospect, Novosibirsk,630091;
130 Nemirovich-Danchenko st., Novosibirsk, 630087
Y. A. Gamza
Russian Federation
M.D., Assistant professor of Ophthalmology Department
52 Krasny Prospect, Novosibirsk,630091;
2a Vladimirovskiy Spusk, Novosibirsk, 630003
M. S. Vasil’eva
Russian Federation
M.D.
130 Nemirovich-Danchenko st., Novosibirsk, 630087
A. S. Derbeneva
Russian Federation
Assistant professor of Ophthalmology Department
52 Krasny Prospect, Novosibirsk,630091;
130 Nemirovich-Danchenko st., Novosibirsk, 630087
M. S. Tarasov
Russian Federation
Ph.D., Assistant professor of Ophthalmology Department
52 Krasny Prospect, Novosibirsk,630091;
130 Nemirovich-Danchenko st., Novosibirsk, 630087
References
1. . Schmidl D., Garhofer G., Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow-relevance for glaucoma. Exp Eye Res. 2011; 93:141–155. doi:10.1016/j.exer.2010.09.002
2. Bonomi L., Marchini G., Marraffa M., Bernardi P. et al. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000; 107(7):1287-1293. doi:10.1016/s0161-6420(00)00138
3. Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116:2305–2314. doi: 10.1016/j.ophtha.2009.05.025
4. Kim Y.J., Kang M.H., Cho H.Y., Lim H.W. et al. Comparative study of macular ganglion cell complex thickness measured by spectraldomain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol. 2014; 58(3):244-251. doi:10.1007/s10384-014-0315-7
5. Browning D.J. Retinal Vein Occlusions: Evidence-Based Management. New York, NY: Springer; 2012.
6. Chan G., Balaratnasingam C., Yu P.K. et al. Quantitative changes in perifoveal capillary networks in patients with vascular comorbidities. Invest Ophthalmol Vis Sci. 2013; 54:5175–5185. doi:10.1167/iovs.13-11945
7. Chao S.C., Yang S.J., Chen H.C., Sun C.C. et al. Early macular angiography among patients with glaucoma, ocular hypertension, and normal subjects. J Ophthalmol. 2019; 15:7419470. doi:10.1155/2019/7419470
8. Richter G.M., Madi I., Chu Z., Burkemper B. et al. Structural and functional associations of macular microcirculation in the ganglion cellinner plexiform layer in glaucoma using optical coherence tomography angiography. J Glaucoma. 2018; 27(3):281-290. doi: 10.1097/ IJG.0000000000000888
9. Kwon J., Choi J., Shin J.W., Lee J. et al. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci. 2017; 58:1637–1645. doi:10.1167/iovs.16-21079
10. Hosari S., Hohberger B., Theelke L., Sari H. et al. OCT angiography: measurement of retinal macular microvasculature with Spectralis II OCT angiography reliability and reproducibility. Ophthalmologica. 2020; 243(1):7584. doi:10.1159/000502458
11. Kwon J., Choi J., Shin J.W., Lee J. et al. Diagnostic capabilities of foveal avascular zone parameters using optical coherence tomography angiography according to visual field defect location. J Glaucoma. 2017; 26(12):1120-1129. doi: 10.1097/IJG.0000000000000800
12. Lommatzsch C., Heinz C., Koch J.M., Heimes-Bussmann B. et al. Does the foveal avascular zone change in glaucoma? Klin Monbl Augenheilkd. 2020; Apr 9. doi:10.1055/a-1080-2900
13. Takase N., Nozaki M., Kato A. et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015; 35:2377-2383. doi:10.1097/IAE.0000000000000849
14. Nagaoka T., Sato E., Takahashi A. et al. Impaired retinal circulation in patients with type 2 diabetes mellitus: retinal laser Doppler velocimetry study. Invest Ophthalmol Vis Sci. 2010; 51:6729-6734. doi:10.1167/iovs.10-5364
15.
16. Freiberg F.J., Pfau M., Wons J. et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016; 254:1051-1058. doi:10.1007/s00417-015-3148-2
17. Al-Sheikh M., Akil H., Pfau M., Sadda S.R. Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016; 57:3907-3913. doi:10.1167/iovs.16-19570
18. Agemy S.A., Scripsema N.K., Shah C.M. et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina. 2015; 35:2353-2363. doi:10.1097/IAE.0000000000000862
19. Bates N.M., Tian J., Smiddy W.E., Lee W.H. et al. Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus. D Sci Rep. 2018; 8(1):5355. doi:10.1038/s41598-018-23604
20. Mo S., Krawitz B., Efstathiadis E. et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci. 2016; 57: OCT130–OCT140. doi:10.1167/iovs.15-18932
21. Shahlaee A., Pefkianaki M., Hsu J., Ho A.C. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016; 161:50–55.e1 doi:10.1016/j.ajo.2015.09.026
22. Ghassemi F., Mirshahi R., Bazvand F. et al. The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers. J Curr Ophthalmol. 2017; 29:293–299. doi:10.3928/23258160-20170601-06
23. Samara W.A., Say E.A.T., Khoo C.T.L. et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015; 35:2188–2195. doi:10.1097/IAE.0000000000000847
24. Kostic M., Bates N.M., Milosevic N.T., Tian J. et al. Investigating the fractal dimension of the foveal microvasculature in relation to the morphology of the foveal avascular zone and to the macular circulation in patients with type 2 diabetes mellitus. Front Physiol. 2018; 9:1233. doi:10.3389/fphys.2018.01233
25. Choi J., Kwon J., Shin J.W., Lee J. et al. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS One. 2017; 12(9):e0184948. doi:10.1371/journal.pone.0184948
26. Kwon J., Choi J., Shin J.W., Lee J. et al. An optical coherence tomography angiography study of the relationship between foveal avascular zone size and retinal vessel density. Invest Ophthalmol Vis Sci. 2018; 59(10):4143-4153. doi:10.1167/iovs.18-24168
Review
For citations:
Fursova A.Zh., Gamza Y.A., Vasil’eva M.S., Derbeneva A.S., Tarasov M.S. Comparative study of microcirculatory and structural parameters of the foveal avascular zone in patients with glaucoma and diabetes mellitus. National Journal glaucoma. 2020;19(3):23-33. (In Russ.) https://doi.org/10.25700/NJG.2020.03.03