Нейровизуализация дегенеративных изменений при первичной открытоугольной глаукоме

Полный текст:


Аннотация

В обзоре литературы представлен анализ методов диагностики нейродегенеративных изменений проводящих путей зрительного анализатора при первичной открытоугольной глаукоме. У большинства больных с длительным течением заболевания даже на фоне нормализованного внутриглазного давления происходит прогрессивное ухудшение зрительных функций. По последним данным, глаукоматозное повреждение не ограничивается ганглионарными клетками сетчатки, а распространяется на весь зрительный путь: сетчатку, зрительный нерв, зрительный перекрест, зрительные тракты, латеральные коленчатые тела, зрительную лучистость и кору головного мозга. В статье представлены результаты обследования больных первичной открытоугольной глаукомой с помощью стандартной магнитно-резонансной томографи и, функциональной магнитно-резонансной томографии и диффузионной тензорной визуализации. Также представлены результаты морфологических методов исследования, которые подтверждают дегенеративные изменения, выявленные с помощью неинвазивных методов. В последние годы все чаще встречаются работы, в которых первичная открытоугольная глаукома рассматривается как нейродегенеративное заболевание наряду с таким заболеванием, как болезнь Альцгеймера. В данном обзоре приведены факты, объединяющие эти заболевания. Полное понимание ретробульбарного и интракраниального глаукоматозного повреждения может позволить проводить наиболее эффективную диагностику первичной открытоугольной глаукомы и способствовать открытию новых терапевтических стратегий для защиты зрительного нерва.

Об авторах

И. Р. Газизова
ФГБУ «Федеральный медицинский исследовательский центр им. В.А. Алмазова»
Россия


С. Р. Зайнуллина
МБУЗ «Городская клиническая больница № 10»
Россия


Список литературы

1. Menzler K., Belke M., Wehrmann E., Krakow K., Lengler U., Jansen A. Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 2011; 54:2557-2562. doi.org/10.1016/j.neuroimage.2010.11.029.

2. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90:262-267. doi.org/10.1136/bjo.2005.081224.

3. Nucci C., Martucci A., Cesareo M., Mancino R., Russo R., Bagetta J. et al. Brain involvement in glaucoma: advanced neuroimaging for understanding and monitoring a new target for therapy. Curr Opin Pharmacol 2013; 13:128-133. doi.org/10.1016/j.coph.2012.08.004.

4. Engin K.N., Yemisci B., Bayramoglu S.T., Güner N.T., Özyurt O., Karahan E. et al. Structural and functional evaluation of glaucomatous neurodegeneration from eye to visual cortex using 1.5T MR Imaging: a pilot study. J Clin Exp Ophthalmol 2014; 5:341. doi.org/10.4172/2155-9570.1000341.

5. Weinreb R.N. Glaucoma neuroprotection: What is it? Why is it needed? Can J Ophthalmol 2007; 42:396-398. doi.org/10.3129/can.j.ophthalmol.i07-045.

6. Quigley H.A. Neuronal death in glaucoma. Prog Retin Eye Res 1999; 18:39-57. doi.org/10.1016/s1350-9462(98)00014-7.

7. Belliveau J.W., Kennedy D., McKinstry R.C. et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991; 254:716-719. doi: 10.1126/science.1948051

8. Rao S.M., Binder J.R., Hammeke T.A., Bandettini P.A., Bobholz J.A., Frost J.A. et al. Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 1995; 45:919-924. doi.org/10.1212/wnl.45.5.919.

9. Duncan R.O., Sample P.A., Weinreb R.N., Bowd C., Zangwill L.M. Retinotopic organization of primary visual cortex in glaucoma: comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res 2007; 26:38-56. doi.org/10.1016/j.preteyeres.2006.10.001.

10. Frezzotti P., Giorgio A., Motolese I., De Leucio A., Iester M., Motolese E. et al. Structural and functional brain changes beyond visual system in patients with advanced glaucoma. PLoS ONE 2014; 9(8): e105931. doi.org/10.1371/journal.pone.0105931.

11. Schneider K.A., Richter M.C., Kastner S. Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. J Neurosci 2004; 24:8975-8985. doi.org/10.1523/jneurosci.2413-04.2004.

12. Lestak J., Tintera J., Svata Z., Ettler L., Rozsival P. Glaucoma and CNS. Comparison of fMRI results in high tension and normal tension glaucoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158(1):144-153. doi.org/10.5507/bp.2013.038.

13. Williams A.L., Lackey J., Wizov S.S., Chia T.M., Gatla S., Moster M.L. et al. Evidence for widespread structural brain changes in glaucoma: a preliminary voxel-based MRI study. Invest Ophthalmol Vis Sci 2013: 5880-5887. doi.org/10.1167/iovs.13-11776.

14. Dai H., Mu K.T., Qi J.P., Wang C.Y., Zhu W.Z., Xia L.M. et al. Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma. Am J Neuroradiol 2011; 32:1347-1353. doi.org/10.3174/ajnr.a2486.

15. Lee J.Y., Jeong H.J., Lee J.H., Kim Y.J., Kim E.Y., Kim Y.Y. et al. An investigation of lateral geniculate nucleus volume in patients with primary open-angle glaucoma using 7 tesla magnetic resonance imaging. Invest Ophthalmol Vis Sci 2014; 55(6):3468-3476. doi.org/10.1167/iovs.14-13902.

16. Iba-Zizen M.T., Istoc A., Cabanis E.A. The results of MRI exploration of glaucoma patients: what are the benefits? Fr Ophtalmol 2008; 6:24-28.

17. Газизова И.Р. Головной мозг и первичная открытоугольная глаукома. СПб: ИЦ Эдиция, 2013; 145 c

18. Ciccarelli O., Catani M., Johansen-Berg H., Clark C., Thompson A. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 2008; 7:715727. doi.org/10.1016/s1474-4422(08)70163-7.

19. Basser P.J., Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J Magn Reson B 1996; 111:209-219. doi.org/10.1016/j.jmr.2011.09.022.

20. Pierpaoli C., Jezzard P., Basser P.J., Blarnett A., Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201:637-648. doi.org/10.1148/radiology.201.3.8939209.

21. Filippi M., Cercignani M., Inglese M., Horsfield M.A., Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001; 56:304-311. doi.org/10.1212/wnl.56.3.304.

22. LeBihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 2003; 4:469-480. doi.org/10.1016/j.ics.2006.04.006.

23. Hui E.S., Fu Q.L., So K.F., Wu E.X. Diffusion tensor MR study of optic nerve degeneration in glaucoma. Conf Proc IEEE Eng Med Biol Soc 2007:4312-4315. doi.org/10.1109/iembs.2007.4353290.

24. Garaci F.G., Bolacchi F., Cerulli A., Melis M., Spano A., Cedrone C. et al. Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging. Radiology 2009; 252:496-501. doi.org/10.1148/radiol.2522081240.

25. Li K., Lu C., Huang Y., Yuan L., Zeng D., Wu K. Alteration of fractional anisotropy and mean diffusivity in glaucoma: novel results of a meta-analysis of diffusion tensor imaging studies. PLoS ONE 2014; 9(5): e97445. doi.org/10.1371/journal.pone.0097445.

26. Anjari M., Srinivasan L., Allsop J.M., Hajnal J.V., Rutherford M.A., Edwards A.D. et al. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 2007; 35:1021-1027. doi.org/10.1016/j.neuroimage.2007.01.035.

27. Bolacchi F., Garaci F.G., Martucci A., Meschini A., Fornari M., Marziali S. et al. Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. Invest Ophthalmol Vis Sci 2012; 53:4191-4196. doi.org/10.1167/iovs.11-9345.

28. Zhang Y.Q., Li J., Xu L., Zhang L., Wang Z.C., Yang H. et al. Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma. Acta Ophthalmologica 2012; 90:295-302. doi.org/10.1111/j.1755-3768.2011.02346.x.

29. Gupta N., Ang L.C., Noel de Tilly L., Bidaisee L., Yucel Y.H. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 2006; 90:674-678. doi.org/10.1136/bjo.2005.086769.

30. Engelhorn T., Haider S., Michelson G., Doerfler A. A new semiquantitative approach for analysing 3T diffusion tensor imaging of optic fibres and its clinical evaluation in glaucoma. Acad Radiol 2010; 17:1313-1316. doi.org/10.1016/j.acra.2010.04.017.

31. Engelhorn T., Michelson G., Waerntges S., Otto M., El-Rafei A., Struffert T. et al. Changes of radial diffusivity and fractional anisotopy in the optic nerve and optic radiation of glaucoma patients. Scientific World J 2012; 1-5. doi.org/10.1100/2012/849632.

32. Zikou A.K., Kitsos G., Tzarouchi L.C., Astrakas L., Alexiou G.A. et al. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol 2012; 33:128-134. doi.org/10.3174/ajnr.a2714.

33. Wu S., Chen K. An efficient key-management scheme for hierarchical access control in e-medicine system. J Med Syst 2012; 36:23252337. doi.org/10.1007/s10916-011-9700-7.

34. Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci 2001;42: 3216-3220.

35. Алексеев В.Н., Газизова И.Р. Нейродегенеративные изменения у больных первичной открытоугольной глаукомой. Практическая медицина 2012; 4:154-156.

36. Crawford M.L., Harwerth R.S., Smith E.L., Shen F, Carter-Daw-son L. Glaucoma in primates: cytochrome oxidase reactivity in parvo- and magnocellular pathways. Invest Ophthal Vis Sci 2000; 41(7):1791-1802.

37. McKinnon S.J., Schlamp C.L., Nickells R.W. Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 2009; 88(4):816-24. doi: 10.1016/j.exer.2008.12.002.

38. Wang W.H., McNatt L.G., Pang I.H., Hellberg P.E., Fingert J.H., McCartney M.D. et al. Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci 2008; 5:1916-1923. doi.org/10.1167/iovs.07-1104.

39. Goldblum D., Kipfer-Kauer A., Sarra G.M., Wolf S., Frueh B.E. Distribution of amyloid precursor protein and amyloid-beta immunoreactivity in DBA/2J glaucomatous mouse retinas. Invest Ophthalmol Vis Sci 2007; 11:5085-5090. doi.org/10.1167/iovs.06-1249.

40. Nucci C., Martucci A., Martorana A., Sancesario G.M., Cerulli L. Glaucoma progression associated with altered cerebral spinal fluid levels of amyloid beta and tau proteins. Clin Exper Ophthalmol 2011; 3:279-281. doi.org/10.1111/j.1442-9071.2010.02452.x.

41. Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985; 82:4245-4249. doi.org/10.1073/pnas.82.12.4245.

42. Grundke-Iqbal I., Iqbal K., Tung Y.C., Quinlan M., Wisniewski H.M., Binder L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83:4913-4917. doi.org/10.1097/00002093-198701030-00020.

43. Bayer A.U., Ferrari F., Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 2002; 47:165-168. doi.org/10.1159/000047976.

44. Tamura H., Kanamoto T., Kato T., Yokoyama T., Sasaki K., Izumi Y. et al. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci 2006; 246:79-83. doi.org/10.1016/j.jns.2006.02.00946.

45. Бачурин С.О., Шевцова Е.Ф. Возможные мишени для создания лекарственных препаратов для лечения болезни Альцгеймера: новые аспекты. Психиатрия 2008; 4-6:43-47.

46. Шевцова Е.Ф., Киреева Е.Г., Бачурин С.О. Митохондрии как мишень действия нейропротекторных препаратов. Вест. Рос. АМН 2005; 9:13-17

47. Ricci J.-E., Gottlieb R.A., Green D.R. Caspaze-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biology 2003; 160(1):65-75. doi.org/10.1083/jcb.200208089.

48. Nowak A., Przybylowska-Sygut K., Gacek M., Kaminska A., Szaf-lik J.P. et al. Neurodegenerative genes polymorphisms of the -491A/T APOE, the -877T/C APP and the risk of primary open-angle glaucoma in the Polish populacion. Ophthalmic Genet 2013; (IGR: 15-3). doi: 10.3109/13816810.2013.838277.

49. Vickers J.C. The cellular mechanism underlying neuronal degeneration in glaucoma: parallels with Alzheimer’s disease. Aust N Z J Ophthalmol 1997; 25:105-9. doi.org/10.1111/j.1442-9071.1997.tb01290.x.

50. Copin B., Brézin A.P., Valtot F., Dascotte J.C., Béchetoille A., Garchon H.J. Apolipoprotein E-promoter single-nucleotide polymorphisms affect the phenotype of primary open-angle glaucoma and demonstrate interaction with the myocilin gene. Am J Hum Genet 2002; 70(6):1575-1581. doi.org/10.1086/340733.


Дополнительные файлы

Для цитирования: Газизова И.Р., Зайнуллина С.Р. Нейровизуализация дегенеративных изменений при первичной открытоугольной глаукоме. Национальный журнал глаукома. 2015;14(4):72-77.

For citation: Gazizova I.R., Zaynullina S.R. Neuroimaging degenerative changes in primary open-angle glaucoma. National Journal glaucoma. 2015;14(4):72-77. (In Russ.)

Просмотров: 133

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)